Stein Shrinkage and Second-Order Efficiency for semiparametric estimation of the shift
نویسندگان
چکیده
The problem of estimating the shift (or, equivalently, the center of symmetry) of an unknown symmetric and periodic function f observed in Gaussian white noise is considered. Using the blockwise Stein method, a penalized profile likelihood with a data-driven penalization is introduced so that the estimator of the center of symmetry is defined as the maximizer of the penalized profile likelihood. This estimator has the advantage of being independent of the functional class to which the signal f si assumed to belong and, furthermore, is shown to be semiparametrically adaptive and efficient. Moreover, the second-order term of the risk expansion of the proposed estimator is proved to behave at least as well as the second-order term of the risk of the best possible estimator using monotone smoothing filter. Under mild assumptions, this estimator is shown to be second-order minimax sharp adaptive over the whole scale of Sobolev balls with smoothness β > 1. Thus, these results extend those of [10], where second-order asymptotic minimaxity is proved for an estimator depending on the functional class containing f and β ≥ 2 is required.
منابع مشابه
Generalized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملShrinkage Estimation of Semiparametric Model with Missing Responses for Cluster Data
This paper simultaneously investigates variable selection and imputation estimation of semiparametric partially linear varying-coefficient model in that case where there exist missing responses for cluster data. As is well known, commonly used approach to deal with missing data is complete-case data. Combined the idea of complete-case data with a discussion of shrinkage estimation is made on di...
متن کاملRobust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملClassic and Bayes Shrinkage Estimation in Rayleigh Distribution Using a Point Guess Based on Censored Data
Introduction In classical methods of statistics, the parameter of interest is estimated based on a random sample using natural estimators such as maximum likelihood or unbiased estimators (sample information). In practice, the researcher has a prior information about the parameter in the form of a point guess value. Information in the guess value is called as nonsample information. Thomp...
متن کاملDifferenced-Based Double Shrinking in Partial Linear Models
Partial linear model is very flexible when the relation between the covariates and responses, either parametric and nonparametric. However, estimation of the regression coefficients is challenging since one must also estimate the nonparametric component simultaneously. As a remedy, the differencing approach, to eliminate the nonparametric component and estimate the regression coefficients, can ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007